<table>
<thead>
<tr>
<th>Biosensor</th>
<th>Part no.</th>
<th>Surface chemistry</th>
<th>Capacity</th>
<th>Immobilization method</th>
<th>Recommended use</th>
<th>Advantages</th>
</tr>
</thead>
</table>
| COOH1 | PS00AFB | Planar carboxylated oligoethylene oxide | Low | Amine coupling | Protein–protein, other large molecule kinetic assays when lectin binding may occur, or dextran alternative is desired. | • Immobilization of targets without derivatization or tags
• Produces a highly stable covalent bond
• Can be used to immobilize affinity ligands to create additional capture chemistries (e.g. Protein A, antibodies, etc.)
• Effective over a wide pH range |
| CDL | 19-0127 | Thin, low density carboxymethyl dextran layer | Medium | Amine coupling | Measuring accurate kinetics of protein–protein or other intermediate (>1 kDa) to large (>25 kDa) molecule interactions. | • Immobilization of targets without derivatization or tags
• Biocompatible with a range of molecules
• Produces a highly stable covalent bond
• Can be used to immobilize affinity ligands to create additional capture chemistries (e.g. Protein A, antibodies, etc.)
• Effective over a wide pH range |
| CDH | 19-0128 | Carboxymethyl dextran three-dimensional hydrogel surface with carboxylic acids | High | Amine coupling | Small molecule–protein interactions, fragment screening, or other target interactions with low binding activity. Assays where high capacity is needed. | • Immobilization of targets without derivatization or tags
• High-capacity dextran surface, ideal for immobilizing a large amount of target for small molecule and fragment analysis
• Biocompatible with a wide range of molecules
• Produces a highly stable covalent bond
• Effective over a wide pH range |
| PCH | 19-0129 | Non-dextran polycarboxylate hydrogel surface | High+ | Amine coupling | Small molecule (<1 kDa)–protein interactions, fragment screening, or other target interactions with low binding activity. Assays where high capacity is needed and/or dextran alternative is desired. | • Immobilization of targets without derivatization or tags
• Highest capacity surface, ideal for immobilizing targets for small molecule and fragment analysis
• Provides an alternative to dextran surface
• Produces a highly stable covalent bond
• Effective over a wide pH range |
<table>
<thead>
<tr>
<th>Biosensor</th>
<th>Part no.</th>
<th>Surface chemistry</th>
<th>Capacity</th>
<th>Immobilization method</th>
<th>Recommended use</th>
<th>Advantages</th>
</tr>
</thead>
</table>
| HisCap | PS05AFB | Non-dextran polysaccharide three-dimensional surface with carboxylic acids pre-immobilized nitriotriacetic acid (NTA), regenerable with imidazole, EDTA | High | Capture via His tag | Small molecule or peptide kinetics with His-tagged protein ligands. Large molecule kinetic assays with His-tagged proteins. | - Capture capacity high enough for low molecular weight analytes such as fragments
- Has a stable baseline, important for accurate kinetic analysis
- Provides a convenient means of directed immobilization of His-tagged proteins
- Can be regenerated using a variety of conditions, such as imidazole, SDS, or EDTA
- Suitable alternative for proteins that are not amenable to amine coupling |
| SADH | 19-0130 | Streptavidin immobilized in three-dimensional carboxymethyl dextran hydrogel | Medium-High | Capture via biotin tag | Intermediate (>1 kDa) to large (>25 kDa) molecule kinetics with biotinylated ligands. | - Highly efficient capture in a wide pH range
- Requires low quantities of ligand (nanomolar concentrations)
- Single step immobilization
- Surface has lower electrostatic charge compared to amine coupling sensors |