Surface Plasmon Resonance: SensiQ Pioneer as a means to screen drug discovery fragments for hits
C. Wishart¹, L. Hardy¹, E. Hethershaw¹, A. Cilia La Corte¹, R. Ariens¹, C. Revill², R. Taylor², C. Fishwick², R. Foster², H. Philippou¹

Background
Common approaches to the identification of hits from small molecules or fragments are via high-throughput screening (HTS) assays and/or surface plasmon resonance (SPR). The aims of this study were to validate the hits from a high-throughput (HT) SPR assay with a well-characterised HTS enzymatic assay against an undisclosed target.

Method
HTS Enzymatic Assay
The undisclosed enzyme target was incubated with 500µM fragment. In TBST* at 37°C for 10 minutes in a 96-well flat-bottom plate. Hits were screened in duplicate (48 fragments maximum per run at a single concentration). Chromogenic substrate was added and absorbance read at 405nm using a microtitre plate reader at 12 second intervals for 3 hours. The V₅₀ was calculated using the slope from the first 14 points in Excel. Positive hits were defined as having a V₅₀ of 90% or less of the vehicle alone, indicating enzyme inhibition. Graphs below were created with GraphPad 6.0.

High-throughput SPR Assay
Two undisclosed enzyme targets were immobilised to the surface of a COOH-5 chip to an RₚRₚₚ of 50RU using the EDC/NHS coupling technique. The OneStep® gradient injection type at 50% loop volume was used to analyse 192 fragment analytes from a 384-well plate against the two target ligands in a single run. The instrument automatically generated a continuous concentration gradient of each fragment in running buffer** at a flow-rate of 125µL/min, and a 20 second dissociation time. Therefore, only one binding curve of each fragment was necessary to calculate the one binding site Kᵣ/Kᵣ and the equilibrium dissociation constant, following the export of data to Odat, the software employed for data analyses. The data below were created with Odat.

Results

HTS-Enzymatic Assay

Graphical representation of V₅₀ of fragment hits. Fragments were screened in duplicate alongside a DMSO vehicle (black) and a well-characterised enzyme inhibitor (red). Data were analysed in Excel and graphs made in GraphPad 6.0.

High-throughput SPR Assay

HT-SPR binding profiles of the fragment hits. Data were analysed in Odat: the binding profile during the titration of fragment against the target is shown as the coloured line, the 1 site binding model is illustrated as a smooth red line.

Conclusions
Using HT-SPR, 598 fragments were screened using 3 plates against 2 target ligands simultaneously, which identified not only hits but the Kᵣ of those hits as the instrument titrates the analyte over 3-4 orders of magnitude in concentration within minutes; whereas the HTS-Enzymatic Assay (HTS-EzA) required 14 plates to give only the hits at one concentration of fragment. It should be noted that the binding profiles of fragments A and D fell outside of the DMSO micro-calibration range, thus although these fragments are clearly hits, the SPR needs repeating to give an accurate Kᵣ. The 9 hits identified by HTS-EzA were also identified by HT-SPR, with an additional 60 hits identified by HT-SPR giving a total of 69 hits out of 598 fragment; an 11.5% hit rate. It is likely the additional 50 hits given by HT-SPR were not identified by the HTS-EzA because those fragments did not bind at the active site. There was an additional fragment identified by HTS-EzA as having an 18% inhibitory effect, which was not identified by HT-SPR, giving a false negative hit rate of 0.0017%. The volume of fragment used is comparable between the methods used, but the HTS-Enzymatic Assay has an additional on-going cost of substrate and the fragment hits require further analysis to yield Kᵣ, thus more sample is required. We conclude that SPR using the SensiQ Pioneer instrument is a time and cost-effective method for fragment/compound screening.

¹. Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, School of Medicine, Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds, LS2 9JT.
². School of Chemistry, University of Leeds, Leeds, LS2 9JT

All correspondence should be directed to Dr. Helen Philippou: Tel: 0113 343 7768; Fax: 0113 343 7738; Email: H.Philippou@leeds.ac.uk